Tight Gaussian 4-Designs

نویسندگان

  • EIICHI BANNAI
  • ETSUKO BANNAI
چکیده

A Gaussian t-design is defined as a finite set X in the Euclidean space Rn satisfying the condition: 1 V (Rn ) ∫ Rn f (x)e −α2||x ||2 dx = u∈X ω(u) f (u) for any polynomial f (x) in n variables of degree at most t , here α is a constant real number and ω is a positive weight function on X . It is easy to see that if X is a Gaussian 2e-design in Rn , then |X | ≥ (n+e e ) . We call X a tight Gaussian 2e-design in Rn if |X | = (n+e e ) holds. In this paper we study tight Gaussian 2e-designs in Rn . In particular, we classify tight Gaussian 4-designs in Rn with constant weight ω = 1 |X | or with weight ω(u) = e −α2 ||u||2 ∑ x∈X e−α 2 ||x ||2 . Moreover we classify tight Gaussian 4-designs in R n on 2 concentric spheres (with arbitrary weight functions).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 3 M ay 2 00 9 Euclidean designs and coherent configurations

The concept of spherical t-design, which is a finite subset of the unit sphere, was introduced by Delsarte-Goethals-Seidel (1977). The concept of Euclidean tdesign, which is a two step generalization of spherical design in the sense that it is a finite weighted subset of Euclidean space, by Neumaier-Seidel (1988). We first review these two concepts, as well as the concept of tight t-design, i.e...

متن کامل

The Nonexistence of Certain Tight Spherical Designs

In this paper, the nonexistence of tight spherical designs is shown in some cases left open to date. Tight spherical 5-designs may exist in dimension n = (2m + 1)2 − 2, and the existence is known only for m = 1, 2. In the paper, the existence is ruled out under a certain arithmetic condition on the integer m, satisfied by infinitely many values of m, including m = 4. Also, nonexistence is shown...

متن کامل

On Spherical Designs of Some Harmonic Indices

A finite subset Y on the unit sphere Sn−1 ⊆ Rn is called a spherical design of harmonic index t, if the following condition is satisfied: ∑ x∈Y f(x) = 0 for all real homogeneous harmonic polynomials f(x1, . . . , xn) of degree t. Also, for a subset T of N = {1, 2, · · · }, a finite subset Y ⊆ Sn−1 is called a spherical design of harmonic index T, if ∑ x∈Y f(x) = 0 is satisfied for all real homo...

متن کامل

Nonexistence of nontrivial tight 8-designs

Tight t-designs are t-designs whose sizes achieve the Fisher type lower bound. We give a new necessary condition for the existence of nontrivial tight designs and then use it to show that there do not exist nontrivial tight 8-designs.

متن کامل

On the strong non-rigidity of certain tight Euclidean designs

We study the non-rigidity of Euclidean t-designs, namely we study when Euclidean designs (in particular certain tight Euclidean designs) can be deformed keeping the property of being Euclidean t-designs. We show that certain tight Euclidean t-designs are non-rigid, and in fact satisfy a stronger form of non-rigidity which we call strong non-rigidity. This shows that there are plenty of non-isom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005